rense.com


Mumps Epidemic
Now In 11 States

A ProMED Mail Post
http://www.promedmail.org
ProMED-mail is a program of the
International Society for Infectious Diseases
http://www.isid.org
5-22-6

[1] Mumps - Virginia
Date: Thu 18 May 2006
From: Raymond Weinstein
 
I thought you might be interested to learn that today [Thu 18 May 2006] I diagnosed what I believe is the 1st case of mumps in Virginia associated with the current multistate outbreak. The patient is a 17 year old female from Manassas with no known recent contact with anyone having mumps and no recent travel or visitors from outside Virginia. She became ill with fever and headache about 5 days ago and developed symptoms of bilateral parotitis within the last 2 days.
 
Laboratory confirmation of the diagnosis is pending. What ties this case to the other outbreaks is the fact that this patient is originally from Kansas and received her 2 MMR vaccinations there in 1990 and 1994.
 
This occurrence makes me wonder: 1. Since this patient was vaccinated in Kansas, but no longer lives there, could this be an indication of vaccine failure? 2. Does her development of mumps, with no known contact with the illness, in a community with a high vaccination rate and where an outbreak is not occurring, indicate that there may be an intermittent subclinical occurrence of the illness? I can imagine a scenario where this might occur in patients who have partial immunity from previous vaccination and who might shed virus without having any symptoms, or at least symptoms to suggest mumps.
 
--
Raymond Weinstein, MD
Manassas,Virginia
USA
 
Some of Dr Weinstein's observations are dealt with in detail in the
following MMWR dispatch. - Mod.CP
 
__________
 
Mumps Now Multi-State Outbreak
Source: MMWR Dispatch 18 May 2006 / 55(Dispatch);1-5
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm55d518a1.htm?s_cid=mm55d518a1_e
 
Update: multi-state outbreak of mumps - United States; 1 Jan to 2 May 2006
 
-----------------------------------------------------
 
CDC and state and local health departments continue to investigate an outbreak of mumps that began in Iowa in December 2005 (1) and involved at least 10 additional states as of 2 May 2006. This report summarizes preliminary data reported to CDC from these 11 states and provides recommendations to prevent and control mumps during an outbreak.
 
Cases of mumps are reportable through the National Notifiable Diseases Surveillance System (NNDSS) (2). NNDSS reports are transmitted electronically to CDC each week and include information on individual cases such as age, sex, date of symptom onset, vaccination status, and complications of illness. Mumps cases included in this report are those with onset from [1 Jan 2006] (MMWR week 1) through [29 Apr 2006] (MMWR week 17) that were reported to CDC as of [2 May 2006] through NNDSS (or the Iowa mumps outbreak-specific reporting system) from Iowa and 10 additional states that reported one or more cases of mumps epidemiologically linked to the multistate outbreak. In addition to cases reported through NNDSS, to provide information rapidly during this outbreak, states have been reporting aggregate numbers of mumps cases and mumps-related hospitalizations and complications biweekly to CDC. Cases reported in this manner through [2 May 2006], also are included in this report.
 
The clinical case definition of mumps* is an illness with acute onset of unilateral or bilateral tender, self-limited swelling of the parotid or other salivary gland, lasting 2 or more days, and without other apparent cause. A confirmed case of mumps is one that is laboratory confirmed or meets the clinical case definition and is linked epidemiologically to a confirmed or probable case. A case is classified as probable if it meets the clinical case definition but is neither laboratory-confirmed nor linked to another confirmed or probable mumps case. In accordance with these definitions, asymptomatic, laboratory confirmed infections were counted as confirmed cases in all states except Iowa. In Iowa, laboratory-confirmed cases that were asymptomatic or had clinical information pending, and cases for which high suspicion for mumps existed but case classification was not yet determined were classified as suspect.
 
During the period 1 Jan to 2 May 2006, 11 states reported 2597 cases of mumps. Eight states (Illinois, Iowa, Kansas, Missouri, Nebraska, Pennsylvania, South Dakota, and Wisconsin) reported mumps outbreaks with ongoing local transmission or clusters of cases; 3 states (Colorado, Minnesota, and Mississippi) reported cases associated with travel from an outbreak state. The majority of mumps cases (1487 [57 per cent]) were reported from Iowa; states with the next highest case totals were Kansas (371), Illinois (224), Nebraska (201), and Wisconsin (176) (Figure 1 [see URL link above]). Of the 2597 cases reported overall, 1275 (49 per cent) were classified as confirmed, 915 (35 per cent) as probable, and 287 (11 per cent) as suspect; for 120 (5 per cent) cases, classification was unknown. Twelve mumps viral isolates from 6 states were characterized; all were mumps genotype G.
 
For 2067 (80 per cent) of the 2597 mumps cases with patient age available, the median age was 21 years (range: less than 1 year to 96 years). In the 8 states with outbreaks, the incidence rate was highest among persons aged 18 to 24 years (17.1 per 100 000 population), followed by persons aged 5 to 17 years (5.2) and 25 to 39 years (4.8) (Figure 2 [see URL link above]). Among the 2073 patients for whom sex was known, 1244 (60 per cent) were female. Among the 2073 cases for which week of onset was known, 1426 (69 per cent) were reported in April (Figure 3 in original text). The peak week of onset has been April 2 to 8 (week 14) in Iowa and April 16 to 22 (week 16) in other states.
 
However, additional cases with onset dates in April continue to be reported. Parotitis was reported in 870 (66 per cent) of the 1327 patients for whom such data were available. Data regarding mumps complications and hospitalizations are incomplete. However, complications have included 27 reports of orchitis, 11 meningitis, 4 encephalitis, 4 deafness, and one each of oophoritis, mastitis, pancreatitis, and unspecified complications. A total of 25 hospitalizations were reported, but insufficient data were provided to determine whether mumps caused all the hospitalizations. No deaths have been reported.
 
Vaccination status of reported mumps patients is being ascertained. In Iowa, preliminary vaccination data were reported through [3 May 2006].*** Among 1192 patients, 69 (6 per cent) were unvaccinated, 141 (12 per cent) had received 1 dose of measles, mumps, and rubella (MMR) vaccine, and 607 (51 per cent) had received 2 doses of MMR vaccine; the vaccination status of 375 (31 per cent) patients, the majority of whom were adults who did not have vaccination records, was unknown. Preliminary data, as of [10 Apr 2006], from 2 mumps outbreaks on college campuses in an Iowa county affected early in the outbreak, identified attack rates of reported mumps cases*** of 2.0 per cent (31 of 1542 students) and 3.8 per cent (44 of 1168 students). Preliminary data from vaccine coverage surveys suggest that the college with the higher attack rate had a smaller proportion (77 per cent versus 97 per cent) of students documented as having received 2 doses of MMR vaccine.
 
As of [10 May 2006], a total of 11 persons potentially infected with mumps who traveled by aircraft during [26 Mar-25 Apr 2006] had been identified on 33 commercial flights operated by 8 different airlines. Notifications had either been initiated or completed for persons potentially exposed on all identified flights. As of [12 May 2006], of about 575 persons potentially exposed on the flights, 132 had received follow-up greater than 25 days after their potential exposure. Two cases of mumps were identified, possibly associated with transmission during air travel. Both cases occurred among Iowa residents, one of whom was a traveling companion of a person known to have mumps.
 
(Reported by: K Gershman, MD, S Rios, D Woods-Stout, Colorado Dept of Public Health and Environment. M Dworkin, MD, K Hunt, Illinois Dept of Public Health. DC Hunt, MPH, J Hill, MPH, Kansas Dept of Health and Environment. P Quinlisk, MD, M Harris, MPH, Iowa Dept of Public Health. C Kenyon, MPH, Minnesota Dept of Health. C Evans, K Mills McNeill, MD, PhD, RG Travnicek, MD, Mississippi Dept of Health. B Zhu, MD, E Hedrick, HL Marx Jr, R Renicker, MSA, Missouri Dept of Health and Senior Svcs. AL O'Keefe, MD, T Safranek, MD, Nebraska Health and Human Svcs System. S Slagy, S Silvestri, Allegheny County Health Dept; J Sullivan, York City Health Bur; J Mankowski, Erie County Health Dept; R Grill, K Luckenbill, P Lurie, MD, R Rickert, MPH, H Stafford, Pennsylvania Dept of Health. S Gannon, L Kightlinger, PhD, South Dakota Dept of Health. J Berg, J Davis, MD, J Gabor, Wisconsin Dept of Health and Family Svcs. F Averhoff, MD, K Marienau, MD, Div of Global Migration and Quarantine; M Bell, MD, E Bolyard, MPH, C McDonald, MD, A Srinivasan, MD, Div of Healthcare Quality Promotion, National Center for Preparedness, Detection, and Control of Infectious Diseases (proposed); TA Santibanez, PhD, and J Santoli, MD, Immunization Svcs Div, SW Roush, MPH, PU Srivastava, MS, Div of Bacterial Diseases, L Anderson, MD, B Bellini, PhD, CB Bridges, MD, G Dayan, MD, ST Goldstein, MD, M Marin, MD, U Parashar, MD, S Redd, S Reef, MD, J Rota, MPH, PA Rota, PhD, J Seward, MBBS, C Shawney, Div of Viral Diseases, National Center for Immunization and Respiratory Diseases (proposed); A Huang, MD, A Parker, MSN, MPH, T Shimabukuro, MD, EIS officers, CDC.)
 
MMWR editorial note
-------------------
 
In the United States, the reported incidence of mumps declined after introduction of mumps vaccine in 1967 and the recommendation for its routine use in 1977 (3). After expanded recommendations for a 2-dose MMR vaccine schedule for measles control in 1989 (3), mumps cases declined further (Figure 4 [see URL link above]). During the period 2001 to 2003, fewer than 300 mumps cases were reported each year, a 99 per cent decline from the 185 691 cases reported in 1968 (2).
 
The current multistate mumps outbreak, with 2597 cases reported through [2 May 2006], is the largest number of mumps cases reported to CDC in a single year since 1991, when 4264 cases were reported (2). The first cases in the current outbreak were detected on a college campus in eastern Iowa in December 2005; the source of these initial cases is unknown (1). Although the age group most affected (38 per cent of cases) has been young adults aged 18 to 24 years, many of whom are college students, the outbreak has spread to all age groups (1).
 
Multiple factors might have contributed to the spread of mumps in this outbreak and on college campuses. First, the college campus environment (such as living in dormitories with frequent and extended close contact with other students) facilitates transmission of mumps and other illnesses that are spread through respiratory and oral secretions. Second, only 25 states***** and the District of Columbia report a college admission requirement of 2 doses of MMR vaccine, including 3 of the 11 states with outbreak-associated cases of mumps; no data on implementation and evaluation of the 2-dose college admission requirement are available (CDC, unpublished data, 2006).
 
Thus, 2-dose coverage with mumps-containing vaccine among college students likely is lower than the median 97 per cent (range: 57 per cent --99 per cent) coverage for measles-containing vaccine (almost exclusively administered as MMR vaccine) for students entering elementary school and the median 98 per cent (range: 62 per cent -- 99 per cent) coverage for students entering middle school reported in 2000 from 38 and 25 states, respectively (4).
 
Third, delayed recognition and diagnosis of mumps cases might have contributed to the spread in this outbreak; younger physicians in the United States likely have not seen mumps, and physicians might not consider the diagnosis in vaccinated persons. Fourth, 2 doses of MMR vaccine are not 100 per cent effective in preventing disease, and accumulation of susceptible persons who were not successfully immunized might be sufficient to sustain transmission in certain settings. In addition, the vaccine might be less effective in preventing asymptomatic infection or atypical mumps than in preventing parotitis, and persons with asymptomatic infection or mild disease might contribute to transmission.
 
Finally, waning immunity has been postulated as a contributing factor in this outbreak. Young adults aged 18-24 years would most commonly have received their most recent dose of mumps-containing vaccine (i.e., MMR vaccine) 6-17 years ago. High vaccination coverage with 2 doses of MMR vaccine, especially in school-aged populations in the United States, likely prevented thousands of additional cases of mumps in this outbreak. Post-licensure studies conducted in the United States during the period 1973 to 1989 determined that one dose of mumps or MMR vaccine was 75 to 91 per cent effective in preventing mumps with parotitis that lasts greater than 2 days (5).
 
Although fewer data are available on the effectiveness of 2 doses of MMR vaccine against mumps, one study from the United Kingdom documented vaccine effectiveness of 88 per cent with 2 doses (6).
 
In a mumps outbreak in a high school in Kansas, students vaccinated with 1 dose of MMR vaccine had an attack rate 5 times that of students vaccinated with 2 doses (7).
 
In a mumps outbreak in a middle school in 1982, before mumps vaccination became widespread, attack rates of 25 to 49 per cent occurred among unvaccinated students, depending on how cases were ascertained (8).
 
During the 1986 to 1990, after widespread implementation of a 1-dose mumps vaccination policy, attack rates of 2 to 18 per cent (most greater than 6 per cent) were documented in mumps outbreaks among junior high and high school students with vaccination coverage of greater than 95 per cent (7,9).
 
In contrast, preliminary data from 2 colleges in Iowa during the current outbreak identified attack rates of 2.0 per cent and 3.8 per cent, respectively, with the lower attack rate in the college with higher 2-dose vaccination coverage.
 
To prevent mumps, the Advisory Committee on Immunization Practices (ACIP) recommends a 2-dose MMR vaccination series for all children, with the first dose administered at ages 12-15 months and the second dose at ages 4-6 years (3).
 
Two doses of MMR vaccine are recommended for school and college entry unless the student has other evidence of immunity (3). In a specially convened meeting on [17 May 2006], ACIP redefined evidence of immunity to mumps through vaccination as follows: 1 dose of a live mumps virus vaccine** for preschool children and adults not at high risk; 2 doses for children in grades K--12 and adults at high risk (i.e., persons who work in health-care facilities, international travelers, and students at post-high school educational institutions). Other criteria for evidence of immunity (i.e., birth before 1957, documentation of physician-diagnosed mumps, or laboratory evidence of immunity) are unchanged. Furthermore, health-care facilities should consider recommending 1 dose of MMR vaccine to unvaccinated health-care workers born before 1957 who do not have other evidence of mumps immunity.
 
During an outbreak and depending on the epidemiology of the outbreak (e.g., the age groups and/or institutions involved), a 2nd dose of vaccine should be considered for adults and for children aged 1-4 years who have received 1 dose. The 2nd dose should be administered as early as 28 days after the first dose, the minimum recommended interval between 2 MMR vaccine doses. In addition, during an outbreak, health-care facilities should strongly consider recommending 2 doses of MMR vaccine to unvaccinated workers born before 1957 who do not have other evidence of mumps immunity. An MMWR Notice to Readers will be published, summarizing these interim recommendations in more detail.
 
Additional means to decrease transmission in outbreak settings include exclusion of persons without evidence of immunity to mumps from institutions such as schools and colleges that are affected by the outbreak. Once vaccinated, students and staff can be readmitted to school immediately, even if they have been exposed to a case of mumps. The period of exclusion for those who remain unvaccinated is 26 days after the onset of parotitis in the last person in the affected institution. Students who acquire mumps illness should be excluded from school until 9 days after the onset of parotitis. After an exposure to mumps, unvaccinated health-care workers without evidence of immunity should be vaccinated and excluded from duty from the 12th day after the first exposure through the 26th day after the last exposure. Health-care workers with mumps illness should be excluded from work until 9 days after the onset of parotitis.
 
In response to the current outbreak, the Iowa Department of Public Health (IDPH) issued vaccination recommendations in March targeting college campus and health-care worker populations at high risk. On 14 Apr, CDC issued a Health Advisory Notice summarizing vaccine policy recommendations for mumps prevention and control. In conjunction with local health departments, IDPH launched a statewide vaccination campaign during 24-26 Apr, targeting persons aged 18-22 years in the 35 Iowa counties with the state's largest colleges and universities. In the second phase of the campaign, conducted 2-4 May, vaccination was expanded to the remaining 64 counties, targeting persons aged 18-25 years. A third phase of the vaccination campaign was begun 10 May and targets persons aged 18-46 years. Vaccination activities also are being conducted or planned in Kansas, South Dakota, and Wisconsin.
 
The data presented in this report are preliminary; the case count is likely to change as additional data become available. Certain reported cases might not have been caused by mumps; cases in persons without parotitis might have been masculinized on the basis of serologic tests. Because of the low number of reported mumps cases during the last decade, laboratorians have limited experience with mumps tests, particularly IgM antibody tests (10). Several different mumps IgM antibody tests are in use; however, neither the sensitivities nor specificities of these tests when used with serum specimens from either unvaccinated or vaccinated persons have been clearly defined. Consequently, interpretation of these antibody test results is difficult, especially in previously vaccinated persons.
 
Studies to define the sensitivity and specificity of mumps IgM antibody tests and reverse transcription-polymerase chain reaction (RT-PCR) tests for mumps virus RNA are in progress. CDC continues to work with state and local health departments to conduct mumps surveillance, assist with prevention and control activities, and evaluate vaccine effectiveness, duration of immunity, and risk factors for mumps illness.
 
References
----------
1. CDC. Mumps epidemic -- Iowa, 2006. MMWR 2006; 55: 366-8. <http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5513a3.htm> 2. CDC. Summary of notifiable diseases---United States, 2003. MMWR 2005; 52(54). <http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5254a1.htm> 3. CDC. Measles, mumps, and rubella---vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1998; 47(No. RR-8). <http://www.cdc.gov/mmwr/preview/mmwrhtml/00053391.htm> 4. Kolasa MS, Klemperee-Johnson S, Papania MJ. Progress toward implementation of a second-dose measles immunization requirement for all schoolchildren in the United States. J Infect Dis 2004; 189(Suppl 1): S98-103. 5. Plotkin SA, Orenstein WA, eds. Vaccines. 4th ed. Philadelphia, PA: Elsevier; 2003: 441-5. 6. Harling R, White JM, Ramsay ME, Macsween KF, van den Bosch C. The effectiveness of the mumps component of the MMR vaccine: a case control study. Vaccine 2005; 23: 4070-4. 7. Hersh BS, Fine PE, Kent WK, et al. Mumps outbreak in a highly vaccinated population. J Pediatr 1991; 119: 187-93. 8. Kim-Farley R, Bart S, Stetler H, et al. Clinical mumps vaccine efficacy. Am J Epidemiol 1985; 121: 593-7. 9. Cheek JE, Baron R, Atlas H, Wilson DL, Crider RD. Mumps outbreak in a highly vaccinated school population: evidence for large-scale vaccination failure. Arch Pediatr Adolesc Med 1995; 149: 774-8. 10. Warrener L, Samuel D. Evaluation of a commercial assay for the detection of mumps specific IgM antibodies in oral fluid and serum specimens. J Clin Virol 2006; 35: 130-4.
 
Notes
-----
* Available at <http://www.cste.org/ps/1999/1999-id-09.htm>. ** Combined MMR vaccine generally should be used whenever any of its component vaccines are indicated. For children aged 1-12 years, MMRV vaccine can be considered if varicella vaccine is indicated. *** Available at <http://www.idph.state.ia.us/adper/common/pdf/mumps/mumps_update_050406.pdf>. **** Defined as isolation of mumps virus from a clinical specimen; parotitis or orchitis; or submaxillary or submental swelling. ***** Arizona, Arkansas, Colorado, Connecticut, Delaware, Georgia, Hawaii, Illinois, Indiana, Kansas, Louisiana, Massachusetts, Mississippi, Montana, Nevada, New York, North Carolina, North Dakota, Oklahoma, Oregon, Rhode Island, Tennessee, Texas, Vermont, and Virginia.
 
--
ProMED-mail
<promed@promedmail.org>
 
[Despite the monotypic nature of mumps virus, different genetic lineages exist and co-circulate globally. Genotypes A to J have been defined on the basis of the nucleotide sequence of the most variable gene, the SH gene. The different lineages are useful properties for tracking the spread of mumps virus, but there is no clear association of the different lineages with different clinical symptoms. This outbreak appears to be homogeneous in that 12 isolates from 6 of the 11 affected states have been characterised as genotype G viruses. It has been stated previously that G genotype mumps virus has been rarely observed in the United States and most recently has been associated with outbreaks in the United Kingdom. However, the possibility of introduction of the virus and its spread to neighboring states within the United States by exposure during airline travel could not be confirmed conclusively. Only 2 of 575 airline passengers at risk might potentially have been exposed to virus. - Mod.CP]
 
 
Patricia A. Doyle DVM, PhD
Bus Admin, Tropical Agricultural Economics
Univ of West Indies
 
 
Please visit my "Emerging Diseases" message board at:
http://www.emergingdisease.org/phpbb/index.php
Also my new website:
http://drpdoyle.tripod.com/
Zhan le Devlesa tai sastimasa
Go with God and in Good Health

 

Disclaimer






MainPage
http://www.rense.com


This Site Served by TheHostPros